Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 17(11): e0277057, 2022.
Article in English | MEDLINE | ID: covidwho-2098771

ABSTRACT

BACKGROUND: The declaration of COVID-19 as a pandemic on March 11 2020, by the World Health Organisation prompted the need for a sustained and a rapid international response. In a swift response, the Government of Ghana, in partnership with Zipline company, launched the use of Unmanned Automated Vehicles (UAV) to transport suspected samples from selected districts to two foremost testing centres in the country. Here, we present the experiences of employing this technology and its impact on the transport time to the second largest testing centre, the Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR) in Kumasi, Ghana. METHODS: Swab samples collected from suspected COVID-19 patients were transported to the Zipline office by health workers. Information on the samples were sent to laboratory personnel located at KCCR through a WhatsApp platform to get them ready to receive the suspected COVID-19 samples while Zipline repackaged samples and transported them via drone. Time of take-off was reported as well as time of drop-off. RESULTS: A total of 2537 COVID-19 suspected samples were received via drone transport from 10 districts between April 2020 to June 2021 in 440 deliveries. Ejura-Sekyedumase District Health Directorate delivered the highest number of samples (765; 30%). The farthest district to use the drone was Pru East, located 270 km away from KCCR in Kumasi and 173 km to the Zipline office in Mampong. Here, significantly, it took on the average 39 minutes for drones to deliver samples compared to 117 minutes spent in transporting samples by road (p<0.001). CONCLUSION: The use of drones for sample transport during the COVID-19 pandemic significantly reduced the travel time taken for samples to be transported by road to the testing site. This has enhanced innovative measures to fight the pandemic using technology.


Subject(s)
COVID-19 , Unmanned Aerial Devices , Humans , Ghana , Pandemics
2.
Arch Virol ; 166(5): 1385-1393, 2021 May.
Article in English | MEDLINE | ID: covidwho-1135167

ABSTRACT

Following the detection of the first imported case of COVID-19 in the northern sector of Ghana, we molecularly characterized and phylogenetically analysed sequences, including three complete genome sequences, of severe acute respiratory syndrome coronavirus 2 obtained from nine patients in Ghana. We performed high-throughput sequencing on nine samples that were found to have a high concentration of viral RNA. We also assessed the potential impact that long-distance transport of samples to testing centres may have on sequencing results. Here, two samples that were similar in terms of viral RNA concentration but were transported from sites that are over 400 km apart were analyzed. All sequences were compared to previous sequences from Ghana and representative sequences from regions where our patients had previously travelled. Three complete genome sequences and another nearly complete genome sequence with 95.6% coverage were obtained. Sequences with coverage in excess of 80% were found to belong to three lineages, namely A, B.1 and B.2. Our sequences clustered in two different clades, with the majority falling within a clade composed of sequences from sub-Saharan Africa. Less RNA fragmentation was seen in sample KATH23, which was collected 9 km from the testing site, than in sample TTH6, which was collected and transported over a distance of 400 km to the testing site. The clustering of several sequences from sub-Saharan Africa suggests regional circulation of the viruses in the subregion. Importantly, there may be a need to decentralize testing sites and build more capacity across Africa to boost the sequencing output of the subregion.


Subject(s)
COVID-19/transmission , SARS-CoV-2/classification , Whole Genome Sequencing/methods , Female , Genome, Viral , Ghana , Humans , Male , Nasopharynx/virology , Oropharynx/virology , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA
3.
PLoS One ; 15(12): e0243711, 2020.
Article in English | MEDLINE | ID: covidwho-968555

ABSTRACT

BACKGROUND: Global cases of COVID-19 continue to rise, causing havoc to several economies. So far, Ghana has recorded 48,643 confirmed cases with 320 associated deaths. Although summaries of data are usually provided by the Ministry of Health, detailed epidemiological profile of cases are limited. This study sought to describe the socio-demographic features, pattern of COVID-19 spread and the viral load dynamics among subjects residing in northern, middle and part of the southern belt of Ghana. METHODS: This was a cross-sectional retrospective study that reviewed records of samples collected from February to July, 2020. Respiratory specimens such as sputum, deep-cough saliva and nasopharyngeal swabs were collected from suspected COVID-19 subjects in 12 regions of Ghana for laboratory analysis and confirmation by real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: A total of 72,434 samples were collected during the review period, with majority of the sampled individuals being females (37,464; 51.9%). The prevalence of SARS-CoV-2 identified in the study population was 13.2% [95%CI: 12.9, 13.4). Males were mostly infected (4,897; 51.5%) compared to females. Individuals between the ages 21-30 years recorded the highest number of infections (3,144, 33.4%). Symptomatic subjects had higher viral loads (1479.7 copies/µl; IQR = 40.6-178919) than asymptomatic subjects (49.9; IQR = 5.5-3641.6). There was significant association between gender or age and infection with SARS-CoV-2 (p<0.05). Among all the suspected clinical presentations, anosmia was the strongest predictor of SARS-CoV-2 infection (Adj. OR (95%CI): 24.39 (20.18, 29.49). We observed an average reproductive number of 1.36 with a minimum of 1.28 and maximum of 1.43. The virus trajectory shows a gradual reduction of the virus reproductive number. CONCLUSION: This study has described the epidemiological profile of COVID-19 cases in northern, middle and part of the southern belt of Ghana, with males and younger individuals at greater risk of contracting the disease. Health professionals should be conscious of individuals presenting with anosmia since this was seen as the strongest predictor of virus infection.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Child , Cross-Sectional Studies , Female , Ghana/epidemiology , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL